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1. INTRODUCTION

For nonequilibrium systems in low dimensions an understanding can often
be gained by studying rather simple models.(1-6) The one-dimensional
asymmetric exclusion process (ASEP) has been used to describe various
problems in different fields of interest, such as the kinetics of bio-
polymerization(7) and traffic.(8) On the other hand, the ASEP is so simple
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The asymmetric exclusion process (ASEP) has attracted a lot of interest not
only because of its many applications, e.g., in the context of the kinetics of
biopolymerization and traffic flow theory, but also because it is a paradigmatic
model for nonequilibrium systems. Here we study the ASEP for different types
of updates, namely random-sequential, sequential, sublattice-parallel, and
parallel. In order to compare the effects of the different update procedures on
the properties of the stationary state, we use large-scale Monte Carlo simula-
tions and analytical methods, especially the so-called matrix-product Ansatz
(MPA). We present in detail the exact solution for the model with sublattice-
parallel and sequential updates using the MPA. For the case of parallel update,
which is important for applications like traffic flow theory, we determine the
phase diagram, the current, and density profiles based on Monte Carlo simula-
tions. We furthermore suggest an MPA for that case and derive the corresponding
matrix algebra.
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that it has achieved a paradigmatic status for nonequilibrium systems.(9) It
can be mapped onto a surface growth model known as the single-step
model(10) and in the appropriate hydrodynamical limit its density profile
obeys the Burgers equation which is itself closely related to the KPZ equa-
tion.(11) The ASEP can also be viewed as a prototype for so-called bound-
ary-induced phase transitions:(12) the boundaries, which can inject and
remove particles from the system, govern—in a subtle interplay with the
local dynamical rules—the macroscopic behaviour of the model and can
produce different phases and phase transitions.

In ref. 13 recursion relations on the system size have been derived for
the ASEP with random-sequential update and open boundary conditions.
Open boundaries here and in the following mean that particles are injected
at one end of a chain of L sites with probability a and are removed at the
other end with probability B. In ref. 13 these recursion relations were
solved for the special case a = B = 1. This solution was later extended in
ref. 14 to general a and B A very elegant solution of the general case was
given at the same time in ref. 15 using a matrix product Ansatz (MPA) for
the weights of the stationary configurations similar to the matrix product
groundstate of certain quantum spin chains.(16) This Ansatz can be used to
compute density profiles and correlation functions. The relationship
between the MPA for quantum spin chains and one-dimensional models of
statistical physics will be discussed in this paper.

Since then the MPA was extended to find the transient of the
model,(17) to describe the ASEP with a defect in form of an additional par-
ticle with a different hopping rate(18) or a blockage,(19) to solve the case of
oppositely charged particles (with hard-core repulsion), which move in
opposite directions (driven by an external electric field) and can inter-
change their charge if they meet.(20) The MPA was also used to recover
solutions of certain integrable reaction-diffusion models.(21)'

Most of these solutions have been found for random-sequential
dynamics. In that case the master equation can be rewritten as a
Schrodinger-like equation for a "Hamiltonian" with interactions between
nearest-neighbours only.(22) Other updates lead to more complicated
master equations with non-local interactions.

It also turned out that the MPA is not just an Ansatz. The stationary
state of an one-dimensional stochastic model with arbitrary nearest-
neighbor interactions and random-sequential update can always be written
as a matrix product.(23) This is also true for an ordered-sequential or sub-
lattice-parallel update, which can be shown to be intimately related.(24)The
matrices in the MPA are generally infinite-dimensional. Therefore, evaluat-
ing physical quantities such as density profiles is still a formidable task, but
often it is at least possible to obtain asymptotic expressions. However, in
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certain regions of the parameter space the matrices can reduce to low-
dimensional variables. A simple example is the case of one-dimensional
matrices, which is equivalent to a mean-field solution.

The implementation of the order of application of the local transition
rates for a given model (the type of update) is an essential part of the
definition of the model, since the transient and even the stationary state
may differ dramatically.(25) In the following, the ASEP will be studied with
types of update that are often more useful for Monte Carlo simulations
than the random-sequential update. The aim of this paper is to use the
ASEP as a case study to investigate the consequences of different types of
updates onto the stationary states of a nonequilibrium model with open
boundaries. Concerning the analytical treatment, the MPA turns out to be
a useful tool.

Hinrichsen(26) was the first to apply the MPA to the ASEP with sub-
lattice-parallel update and deterministic bulk dynamics. He could confirm
earlier conjectures for the correlation functions.(27) It is important to note
that this update is substantially different from the fully-parallel update used
for example for modeling traffic flow. Nevertheless, to our knowledge this
is the first model with a discrete-time update which has been solved using
the MPA.

The results presented here build partially on our previous work,(28'
where we found a mapping of the ASEP with ordered-sequential and sub-
lattice-parallel update onto the random-sequential case. For sublattice-
parallel update this was done independently by Honecker and Peschel.|29)

We will explain the mapping in more detail and give a physical interpreta-
tion of the underlying Ansatz. As a by-product, we solve the model on a
ring.

We also study numerically and analytically the ASEP with parallel
update and present new results like the phase diagram and the current. We
show that the model can be described by a matrix-product structure at
least for small systems. The underlying algebra is somewhat different to the
other ones because a third state appears, which is neccessary to decompose
the transfer matrix into a more simple product.

This paper is organized as follows: Section 2 gives the definitions of
the model and the updates used and establishes a precise relationship
between the MPA for the stationary state of a stochastic model and for the
groundstate of quantum spin chains. Section 3 is devoted to the MPA for
the ASEP with discrete-time updates. In Section 3.1 the matrix algebra for
the ordered-sequential anal the sublattice-parallel update is derived. In
Section 3.2 we propose a MPA for the parallel update by mapping the
model onto a 3-state model with an ordered-sequential update. Further-
more, we find a special line in parameter space where the 2-cluster
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approximation becomes exact. In Section 4 we use the mathematical results
of Section 3 and Monte Carlo simulations to calculate the current, density
profiles and correlation functions for the discrete-time updates. Finally,
Section 5 contains a concluding discussion. We have included several
appendices, which mainly list details of the calculations.

2. DEFINITION OF THE ASEP AND THE MPA

2.1. The ASEP and the Different Updates

Consider sites located on a chain of length L. Each site i (1 <i < L) is
either occupied by a particle (Ti = 1), or it is empty (ti = 0). We have three
basic mechanisms (see Fig. 1): Hopping: We look at the pair (i, i+ 1). If we
find a particle at site i and no particle ("hole") at site i+1, we move the
particle one site to the right with probability p. In the remaining cases,
nothing happens.

Injection and removal: At the boundaries particles/holes can be injected
and/or removed. At the left boundary a particle can be injected with prob-
ability a if site 1 is empty. At the right end of the chain a particle will be
removed with probability ft.

The model can be generalized to allow hopping in both directions by
introducing a probability q for hopping onto an unoccupied site to the left.
Furthermore, one can also inject particles at the right end and remove par-
ticles at the left end. These modifications do not change the basic features
of the model, as long as q < p, although they do make its analytic treat-
ment much more difficult. The case of nonzero q will be considered only
occasionally, and that of extra injection and removal not at all, in the
following.

We now have to define the order in which to perform the hopping, the
injection and the removal in terms of time and space. There are four basic
ways to do that:

Fig. 1. Definition of the ASEP.



(a) random-sequential update: We pick at random a site i. If 2 < i <
L — 1, each particle has a probability^? of jumping to the right (if this site
is empty). If i = 1, we allow for hopping to the right with probability pdt
and particle injection with rate a if this site is empty. For i = L a particle
is removed with rate t if the site is occupied. This update is the realization
of the usual master equation in continuous time. A different p would simply
result in a resealing of time (see Sect. 3). As a consequence, the phase
diagram of the ASEP with update (a) depends only trivially on p. There-
fore one can set p = 1 which is most efficient for computer simulations.

The following three updates are discrete in time.

(b) sublattice-parallel update: We first use our rule for injection
(removal) at site 1(L) and also perform our rules for hopping on the pairs
(2,, 3), (4, 5) etc. After that, we update the pairs (1, 2), (3, 4) etc. (L has to
be even). This update can be used efficiently for computer simulations. Its
main advantage for theoretical purposes is that its transfer matrix can be
written as a product of local terms.

(c) ordered-sequential update: We start at the right end of the chain
and remove a particle at site i = L with probability /?. We then update the
pair (i = L—l,i = L). We continue with pair (i = L — 2, i= L— 1) and so
forth, until the left end of the chain is reached. After the update of pair
(/= 1, i = 2), we allow for injection at site /= 1. For models where particles
only hop to the right this update may also be called more precisely "back-
ward-ordered-sequential update."

Obviously, the order of update can also be reversed. For the ASEP,
these two updates are connected by a particle-hole symmetry: injecting
particles can be regarded as removing holes, and vice versa. Therefore it is
sufficient to study just one of the ordered-sequential updates.

We would like to point out that in principle one has to distinguish two
different types of ordered-sequential updates which one could name site-
ordered-sequential and particle-ordered-sequential, respectively. In contrast
to the site-ordered-sequential update described in (c) above, in the particle-
ordered-sequential update the rules are only applied to occupied sites, i.e.,
to particles. This might have a strong effect, as can be seen most easily for
the case of small particle numbers and the completely asymmetric deter-
ministic case p = 1. In the case of site-sequential update a single particle
injected at the left end moves through the lattice in one timestep (i.e., one
sweep through the lattice). For the particle-sequential update a timestep
means updating occupied sites only and so the particle moves only one site.
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By looking at a lattice with two particles, one can already see that the two
different updates might introduce rather different correlations. Starting with
particles separated by d empty sites, in the site-ordered-sequential update
the left particle will move to the right until it reaches the right particle,
which then starts to move. On the other hand, in the case of particle-
ordered-sequential update the particles will stay always d or d— 1 sites
apart. For general values of/? the situation is similar.

The differences between these two sequential update procedures
manifest itself also in the solution for periodic boundary conditions. We
will come back to this point in Section 4.1. In the following we will always
consider the site-ordered-sequential update—until stated otherwise—to
which we will refer as ordered-sequential update for brevity.

(d) parallel update: The rules for hopping, injection, and removal are
applied simultaneously to all sites of the whole chain.3

The parallel update usually produces the strongest correlations and is
used for traffic simulations.'8' In the case of the ASEP, it is nearly identical
to the particle-ordered-sequential update.

If the ASEP with updates (a)-(c) is put on a ring (no injection/remov-
ing of particles and periodic boundary conditions), a trivial stationary state
(where correlations are absent, see below) is reached, while update (d)
produces a particle-hole attraction.'36' This already shows that different
updates might yield a different behavior.

For analytic calculations usually the random-sequential update is most
convenient since it can be formulated in terms of a "Hamiltonian" with
nearest-neighbour interaction. In Monte Carlo simulations, however,
ordered-sequential updates can be implemented more effectively.

At this point it is necessary to point out the existence of some confu-
sion in the nomenclature of the different updates. The random-sequential
update (a) is sometimes simply called "sequential update," as is the
ordered-sequential one. In several publications the sublattice-parallel
update (b) is called "parallel" which makes it necessary to refer to the
parallel update (d) as "fully-parallel." We urge the reader to check carefully
which type of update is actually used when consulting the literature. In
order to avoid further confusion we will use the terminology which seems
to us the most precise.

3 Note that for the parallel update the partially symmetric ASEP (hopping to right and left
with probabilities p and q, respectively) might lead to ambiguities. One therefore has to set
</ = 0.
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2.2. Master Equation and Quantum Formalism

Our starting point is the master equation for an arbitrary one-dimen-
sional stochastic process. Following ref. 22 we rewrite this equation as a
Schrodinger-like equation in imaginary time. We consider a chain of L sites
j with state variables Tj = 0, I. Generalizations to the case where the state
variables can take more than two values are straightforward. A configura-
tion of the whole system will be denoted by {T} = {T1,, T2,...,Tl,}, its weight
b y P ( { r } , t ) .

The master equation then has the form

where V V ( T - » T ' ) denotes the rate for a transition from {T} to {T'}.
Let us now define a ket state p ( t ) " ( / ) > in the following way. We take an

orthonormal basis indexed by the configuration space {T},

holds, with the (generally non-hermitean) "Hamiltonian" .if

for the off-diagonal elements ( T = T' ) and by

for the diagonal elements.

i.e., we have P ( { r } , t) = <T | p > ( t ) > • It is then easy to see that

with <T' | T> =<5T.,T and define
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From (4) one can see that the stationary state |P0> of the stochastic
model corresponds to the "groundstate" with "groundstate energy" zero
(£0 = 0) of the "quantum spin chain" defined by (5), (6), i.e.,

The conditions (5), (6) guarantee that the real parts of the other eigenvalues
EQ of JV are non-negative. Using the bra groundstate <0| = Z{T} < T I > tne

average of an observable st( { T} ) at time t is given by

This shows that the behaviour for large times t is governed by the low-
lying excitations.

We now restrict ourselves to stochastic processes with random-sequen-
tial dynamics and local and homogenous transition rates FrM+l (denoting
the rate for a local transition of sites j and j+ 1 from (T'J-CJ+I) to {TyT/+,)),
which do not depend on time. In this case #C is a sum of local Hamiltonians
with nearest-neighbour interaction only:(22)

with

Expanding the initial state |/"(f = 0)> = ̂ ai l1/^) in terms of the eigen-
kets It/'.,) with eigenvalues Ex of 3? this can be rewritten as
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(the basis is (00), (01), (10), (11)). Each column of hj adds up to 0, because
the probability has to be conserved.

For the updates (b)-(d) it is generally not possible to write 3? in the
form (10) since one would have to include terms acting on pairs of sites
which are not nearest neighbours. It is then more suitable to use directly
the transfer matrix T describing the update of the whole chain during one
timestep. In the case of the ordered-sequential update, T is simply a
product of the local transfer matrices tt = 1 —hj. It follows

which means that in order to find the stationary state, one has to solve for
the eigenvector of T with eigenvalue 1.

A state |E0> is called optimum groundstate of if and only if condition
(14) holds. This implies that the groundstate energy is independent of the
system size, i.e., there are no finite-size corrections.

The idea is now to construct groundstates by means of a product of
matrices,

and therefore for all j

2.3. Optimum Groundstates and MPA for Quantum
Spin Chains

The construction of optimum ground states for quantum spin chains
via matrix products was introduced in ref. 16 (see also refs. 30, 31, and 32
for further references). Let us consider a Hamiltonian for a quantum spin
chain (with periodic boundary conditions) of the form K = '£.f=l hj,
where hj is the local hermitian Hamiltonian and independent of j, acting
only on spin j and j+l.

It is always possible to set the lowest eigenvalue of h'} equal to zero by
adding a suitable constant. Then h'j is positive-semidefinite and since df" is
the sum of positive-semidefinite operators, it follows that zero is a lower
bound for the ground state energy EQ of tf", i.e., £„ ^ 0. Usually, £0 is
greater than zero (E0>0) and the global groundstate involves also excited
states of hj. Therefore, a construction of the global groundstate is usually
very difficult. However, there are special cases where E0 is equal to zero,
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where the entries of matrix trij are spin-1 single-site states and the symbol
(x) denotes the usual matrix multiplication of matrices with a tensor product
of the matrix elements. Note that m^m^® ••• ®mL is still of the same
size as the matrices mjt but its elements are large linear combinations of
tensor product states. The trace assures the translation invariance of the
groundstate. For non-periodic boundary conditions it has to be replaced
by a suitable linear combination of the elements of m 1 ® m 2 ® ••• <S)mL,

As an example, (16) the ground state of a large class of antiferomagnetic
spin-1 chains can be constructed using the Sz eigenstates |0>y and | + >y by

where the a, b, c, d are real numbers. Condition (14) requires

i.e., all four elements of mj®mj+l are local groundstates of hj. Let us now
write

with suitable 2x2 matrices A0 and A ±. The "•" denotes a product of each
entry of the matrix to the left with the single-site state on the right. It is
obvious that (15) can be written equivalently as

or, defining a column vector

as
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The condition (17) can then be rewritten as

This means that there are two equivalent ways to write |W0)- While (15)
uses a product of matrices with vectors as entries (the usual notation for
quantum spin chains), (21) expresses |i^0> as a product of vectors with
matrices as entries. The original idea of Derrida et al.(15> was to construct
the stationary state |.Po> of a stochastic process defined by (10) as a
suitable linear form of a product of matrices where each matrix corre-
sponds to a single-site state precisely as in (21).

2.4. MPA for Stochastic Systems

In the following we want to describe how the MPA can be applied to
stationary states |P0> of stochastic systems. In contrast to the case of
quantum spin chains we already know the corresponding "groundstate
energy" of the stochastic Hamiltonian 3f defined by (5) and (6). From (4)
we see that 3f |F0> =0 and therefore the groundstate energy is zero, inde-
pendent of the system size. This hints at the applicability of the MPA and
a possible generalization of the optimum groundstate concept.

Indeed it turns out that, using an MPA of the form (21), (14) can be
replaced by a more general condition by allowing for a divergence-like
term,<21) i.e.,

where the vector A can be different from the vector A. It is easy to see that
(for periodic boundary conditions) the divergence-like terms cancel after
summing over j Hence, the stationary state of the stochastic process
described by (5) and (6) is of the form (21).

For hermitian Hamiltonians one always has A = A and (23) reduces to
(22). Therefore one can regard (23) as the generalization of the optimum
groundstate concept to non-hermitian Hamiltonians.

Again it is possible to generalize these ideas to treat non-periodic
boundary conditions. As an example we briefly review the solution of the
ASEP with random-sequential update and open boundary conditions. The
"Hamiltonian" reads (hopping rate p, feeding and removal rates a, ft):



162 Rajewsky et al.

with the boundary terms

and the bulk "Hamiltonian"

From (9) we can see that p only rescales time (and a and ft) and that it
would therefore be sufficient to study p = 1.

Following the MPA, the matrix for the particle (hole) is denoted by
D(E), so that A = (rR. Since the ASEP with open boundary conditions has
(in general) no translational in variance, the trace in (21) is replaced with
a scalar product:

where the normalization constant ZL is equal to ZL = (W\ CL \ Vy with
C — E+D. The brackets « • • • > > indicate that the scalar product is taken
in each entry of the vector A ® • • • ® A.

More explicitly (27) means that the weight P(Tl1,..., TL) of a configura-
tion {T} in the stationary state is given by

Thus one has a simple recipe for the calculation of the (unnormalized)
weight of an arbitrary configuration {T}: Translate the configuration into
a product of matrices by identifying an empty site (i7- = 0) with E and an
occupied site ( r y = 1 ) with D. For example, the configuration 011001...
corresponds to the product EDDEED... = ED2E2D.... Then multiply by the
vectors <w|, |t>> from the left and right, respectively.



In all the other cases, the matrices are infinite-dimensional.
Up to this point, the MPA appears to be just an Ansatz for the

stationary state. However, it can be shown(23) that the MPA (27) with the
"cancellation-mechanism" (23) is an equivalent reformulation of the master
equation in the sense, that for a given one-dimensional stochastic process
with random-sequential update, nearest neighbour interaction and fixed
system size L, the stationary state can be written in the form (27), where
the matrices (and vectors) obey essentially the "cancellation-mechanism"
(23) (with some boundary conditions, see below). Therefore, it is of general
interest to study the quadratic algebras which are produced by (23) and to
try to find explicit representations.(33~35> However, it should be noted that
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We assume that A in (23) is of the form A=(^) where E and D
denote matrices acting in the same vectorspace as E and D. Executing the
sum (10) in (23) leads to a cancelation of all terms in the bulk of the chain.
The remaining terms at the boundaries vanish if the vectors < W\ and | F>
are chosen appropriately:

Inserting (25) and (26) into (23), (29) we get a system of quadratic equa-
tions in E, D, E and D which is called the algebra of Ansatz (23). The
dimension of the matrices is not determined by the Ansatz. However,
taking £ = 1 = - D, the equations reduce to the "DEHP algebra"(15)

Equation (30) can be guessed intuitively: the current JL(j) (describing the
flux of particles through bond j of a chain of length L) has to be constant
throughout the chain. JL(j) is given by ref. 15

and we see that DE oc C = E + D is the simplest way to achieve a constant
current.

It is possible to derive explicit expressions for D, E, < W\ and | K>. ( 1 5 )

It turns out, that one finds one-dimensional representations if and only if



in general, the matrices (and vectors) in the construction of ref. 23 depend
on the system size. In contrast, the "DEHP algebra" has representations
which are valid for arbitrary system sizes. Whether similar representations
exist in general, is still unknown.

In the next section, we will construct the stationary state for the ASEP
with sequential and sublattice parallel update. Note that we do not have a
"Hamiltonian" of the form (10) in this case and that the "cancellation
mechanism" will not be appropriate.

3. MPA FOR THE ASEP WITH UPDATES IN DISCRETE TIME

In this section we will generalize the results for the random-sequential
update to discrete-time updates. In Section 3.1 we solve the ASEP for sub-
lattice-parallel and sequential updates using the MPA. In Section 3.2 we
conjecture a MPA for the parallel update.

Let us briefly discuss the precise connection between the random-
sequential update and the ordered-sequential update, say from the right to
the left, for an arbitray one-dimensional stochastic process with nearest
neighbor interaction. We have seen, that in this case the "Hamiltonian"
describing the random-sequenl dynamics is of the form (10),
^f = \hj, while for theordered-sequential udpate one has to use the
transfer matrix
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with local matrices t} connecting the sites j andj + 1. From (10) and (9) it
is clear that one of the parameters can be used to rescale the time unit; in
the case of the ASEP this leads to expressions which are independent of the
hopping probability p. For the update (35) with discrete time, this is
obviously impossible and we expect the phase diagram of the ASEP to
depend on p nontrivially. Only in the limit of vanishing densities these two
updates can be mapped onto each other(29) by inserting t j=1 —hj (where
1 denotes the identity matrix) into (35) and expanding the product. For
nonvanishing densities, the equations (10) and (35) are connected non-
trivially via additional, non-local terms.

3.1. Sublattice-Parallel and Ordered-Sequential Update

We now solve the ASEP with ordered-sequential (update (c)) and sub-
lattice-parallel (update (b)) dynamics. So far, the ASEP with the latter
update and deterministic hopping has been studied by Schutz(27) and
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Hinrichsen.(26) A brief account of our work has been given in ref. 28. For
simplicity, we will first concentrate on the ordered-sequential update (c)
from the right to the left. Since this update is discrete in time, a stochastic
"Hamiltonian" of the form (10) is not at hand. Therefore, the transfer
matrix T_ has to be used. This means by definition

The stationary state |P0> must not change under the action of the T_ and
therefore is eigenvector with eigenvalue 1 of T_ :

Let us now explicitly write down T'_. The boundary conditions can be
represented by operators 3% and Z£ acting on site j = L and j=\, respec-
tively:

The basis chosen for ^ and y is (0, 1). The update-rule for any pair of
sites (j, j + 1) can be written as

The basis is (00, 01, 10, 11), and we have

with

where 1 denotes the identity matrix.
Formally, a "Hamiltonian" can be defined as S<_ = 1 — 7\_. How-

ever, p_ cannot be written simply as a sum of local "Hamiltonians."
This means that while we can try a MPG Ansatz (27) we cannot use the
"cancellation"-mechanism (23).
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However, the sequential nature of T_ suggests another mechanism:

where A = E)) with square matrices E, D.
This means that a "defect" A—corresponding to a local perturbation

of the stationary state defined by (37)—is created in the beginning of an
update at site / = L, which is then transported through the chain, until it
reaches the left end and disappears.

Equation (42) leads to the following bulk algebra:

and the boundary conditions

The ordered-sequential update in the opposite direction (left to right) can
be treated in the same way. The stationary state is given by

with the same mechanism (42) and (43). However, it is more convenient to
use the particle-hole symmetry for the calculation of averages.

For completeness let us briefly discuss the sublattice-parallel update
(b). In this case the transfer matrix has the structure(26,29)

with

and the MPA for the stationary state is of the form
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One can now use exactly the same mechanism (42), (43) as in the ordered-
sequential case and thus obtains the same algebra (44), (45). For p= 1 the
algebra was first derived and solved by Hinrichsen<26) using a two-dimen-
sional representation for E, D, E, D, < W\, \ K>.

The fact that the ordered-sequential and the sublattice-parallel update
lead to the same algebra (44), (45) implies the existence of an intimate rela-
tionship between the averages of observables. Although the stationary
states themselves are different, they are connected via transformations, and
it can be shown that the density profile of the ordered-sequential update
from the left (r ight) to the right ( left) corresponds to the density of the even
(odd) sites produced by the sublattice-parallel update.(24) This result holds
for arbitrary stochastic models with nearest neighbor interactions.

One can check that for

a one-dimensional solution of the algebra exists.4 This equation defines a
line in the phase diagram where the mean-field solution becomes exact. It
turns out that this line touches all phases. From the experience with the
other updates it seems plausible that an analytic formula for a physical
quantity such as the current or the bulk density should not change inside
a phase. Therefore, one can calculate these quantities on the line defined by
(50) to get formulas, which we believe to be valid in each corresponding
phase. Although we cannot prove this, our assumption is supported by the
results from Monte Carlo simulations.

For general values of a, ft andp the algebra (44) and (45) can be mapped
onto the generalized DEHP-algebra.(28) This is shown in Appendix A and
will be used later in Section 4.2. Appendix B discusses the consequences of
the particle-hole symmetry for the two ordered-sequential updates in more
detail. Appendix C deals with the special case of symmetric diffusion.

3.2. Parallel update

As far as analytic approaches are concerned, this update poses the
greatest difficulties, since it produces the strongest correlations. In the case
of the ASEP, this becomes obvious when looking at the model put on ring:
All updates, except the parallel(37) and particle-sequentialp37) one, lead to a
trivial state where correlations are absent. In the case of the parallel
update, it is known(36) that & particle-hole attraction appears: the probability

4 If we allow hopping in both directions, this line is given by ref. 28 (1 — a)( 1 —/i)( ! -< / ) =
1 — p where q is the hopping probability to an empty site on the left.
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to find an empty site in front of an occupied site is enhanced compared to
the mean-field result.

The model with parallel update and periodic boundary conditions has
first been solved exactly in refs. 8 and 36 using a cluster approximation (see
below). Here the weights are decomposed into products of pairs of sites
overlapping just one site. It turned out that this 2-cluster approximation
becomes exact for periodic boundary conditions.

We now make an analogous calculation for the model with open
boundary conditions. The goal is to find the parameter set for which the
density profile is flat. Note that a flat density profile does not necessarily
mean that there are no correlations between the sites. We denote the prob-
ability for the pair configurat on T iT.+ I at site i, /+i 1 by ^%/T(+1 (t,= 1, 0
and i = 1,..., L). Let us assume that such a probability for a certain pair
configuration is independent of the position of the pair. The condition
-P01 leads to a flat density profile Ti> = < T 2 ) = ••• =<?z.»> but
PT,TI+I is not necessarily equal to P T f - P T f + 1 .

The 2-cluster approximation corresponds to a factorization of the
weight P(Ti,T2,...,rL):

where the R's reflect the influence of the boundaries; they can be set to
R0 = 1 and ./?! =r.

It is sufficient to study a system of 3 sites. The generalization to larger
systems is straightforward.'36'

The (exact) master equation for the stationary state reads x=Tx
where x is a vector containing the 8 possible configurations, and T is the
8 x 8-dimensional transfer matrix for L = 3. By inserting Ansatz (51) into
this master equation it is straightforward to show that (51) is exact if and
only if

This means that the condition we have found for a constant density profile
is exactly the same as for the other discrete-time updates, see (50). The
reason for this coincidence is still unkown. Note that (52) is not a simple
mean-field line.

Similar ideas have been used recently(38)to study the case of deter-
ministic bulk dynamics (p = 1) more closely. Using an improved mean-field
approximation and a microscopic characterization of the local configura-
tions, very accurate results for the density profiles and correlation functions
have been obtained.
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In the following we will propose a MPA for the parallel update. Equa-
tion (51) suggests that matrices denoting pairs of particles and/or holes
should be used. The main problem is that the resulting algebra will be very
complex, since it will contain many variables (matrices). On the other
hand, if we use a MPA of the form (27), a simple mean-field solution will
not be found, e.g., there will be no scalar solution for the algebra. However,
such an Ansatz could produce (51) under condition (52) in the form of a
low-dimensional representation.

Furthermore, even if a choice for the MPA is made, we still have to
find a mechanism which ensures stationarity. The transfer matrix, however,
cannot be decomposed easily in products or sums of local terms.

The main difference between the parallel update and the ordered-
sequential update from the left to the right is that in the parallel update,
a particle can move only one site to the right (per update of the chain).
This enables us to use the ordered-sequential update, if we introduce a
third state for particles that have been moved. The local (sequential)
update operator then has to transform a third-state particle into a "normal"
particle in the following update step.

We write down the Ansatz

which has to satisfy

The update-rule f for any pair of sites (i , i+!) is now nine-dimensional.
However, since the third states must not appear after the update, the

last four rows and every third column are irrelevant (here set to zero). The
explicit expression for & can be found in Appendix E. We have

with



170 Rajewsky et al.

The mechanism for stationarity reads now

with the new third-state matrix f". This leads to an algebra, which can be
found in Appendix F. Note that the last bulk equation 0 = DP excludes a
scalar solution for the algebra. This is consistent with our earlier observa-
tion that there is no simple mean-field solution of the model.

First, we can check the relations which connect the densities at the
ends of the chain with the current j. This calculation can be done for
arbitrary system sizes and is presented in Appendix G.

Second, it is possible to show that the algebra correctly describes a
system of three sites. This can be done by taking the expressions for the
weights of the eight possible configurations of the stationary state given by
(54) and by applying several times the algebraic rules. Thereby each weight
can be expressed as a linear combination of the other weights.5 The result-
ing system of linear equations turns out to be identical to those obtained
from the transfer matrix T.

Thirdly, it can be checked whether the algebra can be reduced to a
generalized DEHP-algebra of the type

with some numbers a, b. This equation induces certain relations between
weights for a system of size L and L — 1, which can be checked using the
exact solutions. It turned out that (58) cannot be valid.

We found a two-dimensional representation for the bulk algebra,(39)

but despite intensive effort, we could not solve the complete algebra.6

Therefore, Monte Carlo simulations have been performed.(40? The results
will be presented in Section 4.2.

5 Note that formulas for macroscopic variables like the current are quite complicated for this
small system; the current, for example, is a ratio of polynomials in <x, B and p containing 27
additive terms.

6This situation is very similar to ref. 19 where a MPA for the ASEP with a defect was
proposed.



4. COMPARATIVE STUDY OF PHYSICAL QUANTITIES

In the following we will investigate the consequences of the mathe-
matical description developed in the previous section. First we investigate
the ASEP with periodic boundary conditions for the different updates. This
will allow us later to distinguish between "pure" bulk effects and "bound-
ary-induced" bulk effects. After that we will derive and compare the phase
diagrams, density profiles and other physical quantities for the various
updates.

4.1. Periodic Boundary Conditions

For random-sequential dynamics the stationary state of the ASEP
with periodic boundary conditions and a fixed (overall) density is given by
\P0> = 1/ZL Tr(S (x) ... ® A) where the elements E and D of the vector A
satisfy the algebra (30) and the normalization is given by ZL = Tr CL with
C = E + D. Since the boundary equations (31) and (32) do not have to be
considered, it is possible to find a one-dimensional representation of the
matrices E and D which then become real numbers e, d. The current is
calculated from JL = J ( p , p ) = p/ZL Tr(Cj-1 D E C L - j - 1 ) = p/c, where we
have used (30) and ZL = CL with c = e + d. In contrast to the case of open
boundary conditions, the density p is now fixed and the density profile is
constant, p = < T j > , independent of/ With

one finds p = d/c. Therefore the current is given by

This is exactly the mean-field result, because in mean-field approximation
a site is occupied with probability p and its right neighbour is empty with
probability 1 - p. Since hopping then occurs with probability p, one
obtains (60).

This result is not surprising as the existence of a one-dimensional
representation implies the absence of correlations between neighbouring
sites, i.e., the MPA reduces to mean-field theory.

We now turn to the ASEP with backward-sequential update on a ring.
The state

ASEP: Comparison of Update Procedures 171



172 Rajewsky et al.

Fig. 2. Fundamental diagram (flow vs. density) for the ASEP with ordered-sequential
update and periodic boundary conditions. The vertical lines indicate the location o f ™ x ( p ) ) .

is obviously translation-invariant and, because of (42), stationary (the
argument of the trace is a vector with a product of matrices in each compo-
nent; the trace has to be applied to each component). The algebra can be
directly solved with one-dimensional matrices (see Appendix D). The
current J ^ ( p , p ) for the ordered-sequential update is not given by (33),
but by7

For the case of periodic boundary conditions one finds8

Figure 2 illustrates this result. Again this result can be obtained directly
using a mean-field argument. The site to the right of an occupied site is
empty with probability 1 - ( p - J ) . Here one has to take into account
that the density is reduced by J'_ after the update of that site. Therefore
the current satisfies J'_ = pp( 1 — (p — j)) which leads to (63). The maximal
flow (p fixed) is reached for a density p m a x ( p ) = ( p ) ( 1 - ^ / l - p ) ^ 1/2.

7 Note that Eq. (62) also applies for the sublattice-parallel update.
8 The corresponding formula for the ASEP with hopping in both directions can be found in

Appendix D.
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The sequential update 7\_ "likes" high p and high densities. The particle-
hole symmetry can be used to determine these quantities for T_ simply by
replacing p with 1 — p: T_ "prefers" high p and low densities.

It is interesting to compare (63) with the well-known result'361 for
parallel update,

For the parallel update a mean-field theory for the distances between
consecutive particles becomes exact.(41) Similar results have been obtained
recently by Evans,(37) who solved the ASEP with periodic boundary con-
ditions in the presence of disorder9 with parallel update and a particle-
sequential update by generalizing the approach of.(31)

J//(p, p) is obviously symmetrical with respect to p = 1/2. It is maximal
at pmax = 1/2 for all values of p, while p^ is always higher than 1/2
(except for p = 0).

Hence, the maximal currents (for a given p) are y_ (pmax, p) = ( 2 / p ) x
(1 - , p ) - 1 and J11(pmax, p) = 1(1 - R 1 - p ) . I t is intuitively clear
that j(pmax,p)>J//(pmax, p) holds, and it can be verified easily.

Let us now return to the model with open boundary conditions.

4.2. Phase diagram

The phase diagram for random-sequential dynamics has been deter-
mined for p= 1 in refs. 13-15. This is no restriction since, as mentioned
before, p only rescales time (and a->a/p, b - » > ) . Since it will turn out
that the phase diagrams for the different updates are rather similar we will
not repeat the results for the random-sequential update here. Instead we
will first determine the phase diagram for the ASEP with open boundary
conditions and discrete time by using the results of Section 3.1 and discuss
the differences to the random-sequential case later. In Appendix A it is
shown how the algebra (44), (45) can be projected onto the DEHP-
algebra. The representations of this algebra (and the resulting phase
diagram) are known for all parameter values a, B, p, q.(44,33,34> Therefore,
we have obtained explicit expressions for the matrices and vectors, and
have thus constructed the stationary state of our model; we do not have to
be concerned about representations any more that might not satisfy (A.3)
since the projection onto the DEHP-algebra already covers the whole
parameter space.

9 Each particle carries its own hopping probability pj see also refs. 42 and 43.
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Furthermore, it is straightforward to calculate observables such as the
current and the density, at least in principle.

The mapping of Appendix A strongly suggests that the well-known
phase diagram of the ASEP with random-sequential update and stochastic
hopping in both directions(44,,33,34) will also be valid for the ASEP with
ordered-sequential update. This is indeed correct and has been proven
directly in ref. 29. The phase diagram is shown in Fig. 3. The mean-field
line is the curved dashed line. Also shown are density profiles calculated
from Monte Carlo simulations. All well-known features of the phase
diagram (high-density phase, low-density phase, maximum current phase,
coexistence line with linear density profile) are recovered. The intersection
of the mean-field line (50) with the line a = b defines the endpoint ac. (=Bc.)
of the coexistence line. This yields

In the case of deterministic hopping ( p = 1 ) , the maximum current phase
vanishes, and we recover the result of Hinrichsen.(26)

It is known that for the DEHP-algebra, the mean-field expressions for
the current are exact. We can calculate the current for our model on the
mean-field line (which touches all three phases) and believe that that the

Fig. 3. Phase diagram for the ASEP with ordered-sequential update T_ for p = 0.5. The
mean-field line (50) is curved dashed line. The straight dashed lines are the boundaries
between the phase AI and All (BI and BII ) . The inserts show density profiles obtained from
Monte Carlo simulations.
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resulting formulas are also valid away from this line (in each corresponding
phase, see also the discussion in 3.1). This is also supported by results from
computer simulations. Our results are

which is in excellent agreement with our numerical data.
Since the relation J(a,b, p) = B p ( o , b, p, x = L) is exact, we immediately

get the bulk density in the high-density phase: pbulk = (1/p)[(p-b)/(1 — b ) ] •
The bulk density in the low-density phase is given by a./p (see Appendix B).
Figure 4 shows a space-time diagram for a point on the coexistence line
(p = 0.75, a = b = 0.3) produced by the Monte Carlo simulation. The well-
known fluctuating shock can nicely be observed.

Typical space-time diagrams for the different phases can be found in
Fig. 5. The "jams" in the high-density phase move from the right to the left.
In the low-density phase, groups of particles (small jams) move from the
left to the right.

For the case of parallel dynamics extensive Monte Carlo simulations
have been performed(40) which revealed that the phase diagram looks
essentially the same as before (Fig. 3). Again, we find a high- (low-) density
and a maximum current phase and a linear density profile along the line
a = b, until the 2-cluster line (52) is touched.

Since we have a particle-hole symmetry in the model, the density for
a = b and odd lattice sizes has to be 1/2 for site (L+ l)/2. Therefore, the
"bulk density" p(a, ft, p, x = (L + 1 )/2) in the maximum current phase must
be 1/2.

On the 2-cluster line defined by (52), one can calculate the current



and the remaining bulk densities pbulk = a( 1 — a)/(p — a2) (low-density) and
pbulk = (p —P)/(p — B 2 ) (high-density phase). For general values of a and ft
we find an excellent agreement with the numerical data. Figure 5 presents
typical space-time diagrams in the various phases. The particle-hole attrac-
tion is apparent.

Note that for every update scheme the maximal current J ( p m a x , p) on
the ring (as calculated in Section 4.1) is equal to the value of the current
in the maximum current phase for that update. The value of pmax gives the
corresponding bulk density. This shows that the current in the maximum
current phase is determined by the "capacity" of the ring.

Fig. 4. The space-time diagram for p = 0.75, a = ft = 0.3. The microscopic shock moves freely
on the chain.
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4.3. Density Profiles and Phase Transitions

For the parallel update we performed extensive Monte Carlo simula-
tions in order to determine quantities like density profiles and correlation
functions. In this section we will compare these results with those obtained
analytically and numerically for the other update types.

177

Fig. 5. Typical space-time diagrams for the various phases.



The results presented in Section 4.2 show that one can distinguish at
least three different phases with respect to the flow. In the low- (high-)
density phase the current depends for a given value of p only on a (ft) and
in the maximum current phase the current is independent of the chosen
in- and output rates. This basic structure of the phase diagram is the same
for all types of update although the bulk properties change drastically.

A more detailed analysis of ASEP with random-sequential update has
shown(14) that the system is governed by two independent length scales ea

and £p, which represent the influence of the boundaries. At the critical
value of a and ft these length scales diverge and a phase transition occurs.
This divergence produces two additional phases compared to the mean-
field results. Thus the parameter space is divided into five different phases.
The low-density phases AI and AII, where the bulk properties are deter-
mined by the value of a, the high-density phases BI and BII, where the out-
put rate B determines the flow, and the maximum current phase where the
flow is independent of a and ft. The phases AI and AH (BI and BII) are
distinguished by the behaviour of the density profile near the boundaries
(see below).

We checked this scenario for the parallel and ordered-sequential
update. In order to avoid difficulties due to the p-dependent scale factor of
the phase diagram we analyzed the density profiles for p = 0.75. Our
simulation results are obtained for systems with 320 sites. Since finite-size
corrections are rather small, this size is already sufficient to obtain the
behaviour in the limit of large L.

We first measured the density profile in the low-density phases AI
and AIL In refs. 14 and 15 it has been shown that for large L the
asymptotic behaviour near the boundaries changes from a pure exponential
decay in the phase AI to the enhanced exponential decay according to
exp( - (L - x)/£a)/^/L — x in the phase AIL This change of the behaviour
near the boundaries is due to the divergence of the length scale eb at
the transition line. eb remains infinite throughout the whole phase AIL
Unfortunately, the divergence of eb cannot be calculated directly because
the relevant length scale e, which determines the exponential decay in AI,
is given by
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Thus the correlation length e remains finite at the transition line from AI
to AIL In contrast to the divergence of £b, the asymptotics of the density
profile can be checked against the numerical results. Figure 6 shows that
the density profile for a = 0.40, b = 0.42 and parallel update can be nicely
fitted by a pure exponential decay, but within the phase All the enhanced
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Fig. 6. Density profiles for parallel update (p = 0.75) in the low-density phases AI and AII.
The insert compares the exact asymptotic form with a pure exponential decay.

exponential form has to be used (see also the insert in Fig. 3). Another
characteristic line crossing the low-density phase AII is the mean-field line,
where the density profile is completely flat. This line separates the
monotonically decreasing density profiles from monotonically increasing
profiles, but the asymptotic behaviour is left unchanged. The behaviour of
the density profiles in the high-density phases BI and BII can he obtained
using the particle symmetry of the model.

The transition between the high- and low-density phases is driven by
the diverging length scale £. This divergence occurs although both length
scales are finite, because at the transition line £a and £b coincide. The
qualitative agreement of the density profile strongly suggest that the rele-
vant length scale in the low-density phase is given by (68) also for discrete-
time updates. Moreover, the comparison of the numerically estimated
correlation length shows that the correlation lengths of the parallel and
ordered-sequential update are identical and differ from those obtained for
the random-sequential only by a constant factor (Fig. 7). Exactly at the
transition line a = b, one finds a linear density profile as shown in Fig. 8.
This linear profile is result of a fluctuating shock front which separates for
a given time a high-density region from a low-density region. The position
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Fig. 7. Log-Log plot of the correlation length for different types of updates (OS = ordered-
sequential, PARA = parallel, RS = random-sequential). The length scales are obtained from an
exponential fit of the density profile, a and B are chosen such that oc + b = 0.6 holds (a,. = 0.3).

of the shock front fluctuates through the whole lattice such that a time
average over all single time profiles gives a linear profile.

The transition from the low- (high-) density phase AII ( B I I ) to the
maximum current phase is characterized by a change of the asymptotic
behaviour of the density profile from the enhanced exponential to a pure

Fig. 8. Density profiles near the first order transition at a = b = 0.3 for the random sequen-
tial update using the exact results of ref. 15. Again a + b = 0.6 holds.
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Fig. 9. Divergence of the correlation length £xnear the transition to the maximum current
phase (B = 0.75).

algebraic decay. The transition is driven by the divergence of the length
scale £ x ( £ b ) for a-»ac (B-» Bc). Both length scales are infinite not only at
the transition line but for all values of a and ft larger than the critical value.
Therefore an algebraic decay of the density profile can be observed in the
whole maximum current phase. Figure 9 shows the diverging correlation
length for different update types. Again the length scales of the updates
with discrete time agree and the length scales produced by the random-
sequential update are larger if one considers the same in- and output rates.

The flow is generated by the (10)-clusters (the mobile pairs), while the
other 2-cluster configurations exclude hopping of particles. Therefore, we
measured density profiles of the probabilities pTiTi=1 of 2-cluster configura-
tions T i T i + 1 . One gets a flat profile of the mobile pairs P1i0i+1 (see Fig. 10)
which is a consequence of Eq. (33) for the current in the case of parallel
dynamics.10 The nontrivial part of the density profile is produced by the
immobile pairs. The identity P1ioi+t = P o i 1 i + l > which is already known from
the periodic system,(8) is only true for flat density profiles. One observes
qualitatively the same behaviour for the random-sequential, but not for the
ordered-sequential update.

10 This is not true for the ordered-sequential update, since in this case the current depends on
the local defect generated by the update. Hence, the current depends on D£ (see (62) )
instead of D£(see (33)).
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For the ordered-sequential update the transport of a local defect
changes the behaviour of the PTiTi+l profiles: The density of particles in
front of hole at the defect site (in the case of backward-sequential update)
determines the flow and therefore none of the 2-cluster configurations is in
general translation-invariant after a sweep through the lattice.

5. DISCUSSION

We have presented an extensive comparative study of the ASEP with
different updates. The purpose of this investigation is threefold; First of all,
despite the importance of the ASEP, not much has been known about its
properties for discrete-time updates. Second, we tried to obtain a better
understanding of the similarities and differences of the different updates.
Finally, there is also a practical aspect. In refs. 25 and 45 it has been shown
that different dynamics perform quite differently in Monte Carlo simula-
tions. In order to save computational time it might therefore be useful to
choose a certain update. Then it is also necessary to know how to translate
the results into those for other updating schemes.

The main tool that we used in our investigations was the MPA which
allows for an analytical solution for the cases of random-sequential,
ordered-sequential and sublattice-parallel updates. We also proposed a
MPA for the important case of parallel dynamics, but unfortunately we
were not able to find a general representation of the resulting matrix
algebra. Therefore extensive Monte Carlo simulations have been performed

Fig. 10. Density profile of the pair probabilities Ptti+1 for the parallel update in the low
density phase All (a = 0.40, b = 0.75, p = 0.75).



in order to determine the phase diagram. These numerical results, together
with an analytical solution for a special line in parameter space, allowed us
to conjecture analytical expressions for the phases diagram.

Our results show that the phase diagram has the same basic structure
for all the updates investigated here. One finds three different phases
characterized by the value of the current. For a>b and b < p c ( p ] the
system is in the so-called high-density phase. Here the current depends
only on the removal rate ft since particles are inserted much more
efficiently than they are removed. Just the opposite situation is found in the
low-density phase, a < b a n d a < x c ( p ) . Here the removal is much more
effective than the insertion and the current depends only on a. Note that
for each update a c ( p ) — b c ( p ) and the functional forms of the currents in
the high- and low-density phases are identical (see Table I).

Finally, for a > a c ( p ) and B > B c ( p ) one finds the maximum current
phase. Here the current is independent of a and B. Both insertion and
removal are so effective that the current is only limited by the "bulk
capacity." Indeed, the current in this phase is identical to the maximal
current of the corresponding system with periodic boundary conditions.
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Table 1. Comparison of Currents and ( B u l k ) Densities in the Three Phases for
the Different Updates"

low-density

phase

high-density

phase

max. current

phase

critical rate

rand.-sequential

J = pa(1 -a.)

p = a

J=pb(1-b)

P = 1 - P

J =

/' =

0-c =

ordered-seq. ( T- ) parallel

" The bulk densities for T- are given by p — J for T-_ . The currents for T_ and T_ are
identical.



Phase transitions between these phases are driven by diverging length
scales ea or ^ within the high- and low-density phases. These length scales
depend on the rates a and ft, respectively. In contrast to that, the periodic
systems exhibit only extremely short-ranged correlations. The strongest
correlations are found for the parallel update, but even here already the
2-cluster approximation is exact. This leads to exponentially decaying correla-
tion functions with a rather short correlation length (except for px\/1/2 and
p w 1).(46) So the long-ranged correlations found for the open system are due
to the boundary conditions and the transitions are genuine "boundary-induced
phase transitions." This makes it also understandable why the phase diagrams
for the different updates look so similar, the only difference being the location
of the transitions and the functional form of the observables. Furthermore the
numerical analysis shows that the update type does not change the "universal"
properties of the model: We observe the same asymptotics of the density
profiles in the different phases and also the qualitative behaviour of the length
scales near the phase boundaries does not depend on the update. For the dis-
crete updates the length scales agree even quantitatively.

Recently, for the case of periodic boundary conditions there has been
some progress in the understanding of the differences between random-
sequential and parallel update.(47) For the latter so-called "Garden of
Eden" (GoE) states11 exist. These states can not be reached dynamically,
they do not have a predecessor. By eliminating these states one finds that
there are no correlations in the reduced configuration space, as for the case
of random-sequential update (but here in the full configuration space since
Garden of Eden states do not exist). In both cases a corresponding mean-
field theory (in the reduced and full configuration space, respectively)
becomes exact. Therefore the existence of GoE states is the reason for the
correlations in the ASEP with parallel dynamics and periodic boundary
conditions. Since the bulk dynamics for the ASEP with open boundaries is
the same as for the periodic case, we expect the GoE states to play an
important role also in that case.

In this paper, valuable information has been gained by means of low-
dimensional representations of the matrix algebras. A one-dimensional
representation clearly corresponds to a simple mean-field approximation.
However, in the case of two (or higher) dimensional representations, nothing
is known about the physical interpretation of these solutions. For example,
it could be possible that there is a close connection between cluster
approximations and these representations; we remark that it is possible to
write the expectation values of densities and correlations of any exact

11 Here on has to distinguish between particles which moved in the previous timestep (velocity 1)
and particle that did not move (velocity 0).
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(stationary) solution of a 2-cluster approximation as a product of two-
dimensional matrices precisely in the form resulting from a MPA.

Recent investigations have shown that the ASEP is capable of reproduc-
ing the essential features of traffic in a city such as Geneva.(48) The authors
studied a simple extension of the one-dimensional ASEP to two dimen-
sions.12 Therefore, it would be most interesting to generalize the MPA to
higher dimensions.13 A first step would be to study the ASEP on a ladder. The
analytical method used in this paper is directly applicable to "stochastic" lad-
ders.(53) Since the groundstates of certain quantum spin ladders have been
constructed recently(54,55) using optimum groundstates (see Section 2.3),
there seems to be a good chance to find low-dimensional representations of
the corresponding algebras. This would lead to a better analytical under-
standing of the fascinating phenomena that occur in higher-dimensional non-
equilibrium systems.(56,2) In the meantime, we found explicit representations
of the matrix algebra for parallel dynamics (Appendix F) for parameter com-
binations given by Eq. (52). However, a different MPA allows a complete
exact solution and the verification of all quantities conjectured in Table I
(M. R. Evans, N. Rajewsky, and E. R. Speer, in preparation).

A. MAPPING OF THE ORDERED-SEQUENTIAL ALGEBRA
ONTO THE DEHP-ALGEBRA

We here treat the general case where particles are also allowed to hop
to empty sites on the left with probability q. In this case the bulk algebra
(44) is generalized to
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with the boundary conditions (45). We first note that

holds for all values of p, q.
The crucial step is now to demand

12 In refs. 49-51 other generalizations of the ASEP have been used for simulations of urban
traffic in Duisburg and Dallas.

13 See ref. 52 for a numerical investigation of a two-dimensional ASEP.
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with some (real) number L Note that this is the simplest way to satisfy
(A.2).

Now, we must show that a solution (representation) of the algebra
(44), (45) plus equations (A.3) exists for all possible values of the
parameters o.,fi,p,q. (A.3) reduces the algebra from eight equations to
three equations:

We define

and rewrite (A.4) as

This is the algebra for the ASEP with random-sequential update and
hopping in both directions (with probability p and q, respectively), but
with the same local transfer matrix and the same boundary conditions as
in our model. The algebra was solved for p = 1 and q = 0 by Derrida et
al.(15) with infinite-dimensional matrices. Note that the vectors < W\ and
| F> of their solution have to be rescaled with (1 — s)/(l — p) and 1/(1 — q),
respectively. A thorough discussion of the algebra (A.6) can be found in
refs. 33, 34, 44, 57.

We write down an explicit representation of the algebra (A.4) with
1 = 1 in the case q = 0:
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As expected, constraint (50) leads to an effectively one-dimensional
representation.

B. SYMMETRIES OF THE DENSITY PROFILES FOR THE
ORDERED-SEQUENTIAL UPDATES

As shown in Section 3 the stationary state for T_ is simply given by
(46). When inserting (A.5) into (46), we get a connection between the
density profiles14 of the stationary states produced by T'_ and T_ :

One also has J(a, ft, p) = bp(«., ft, x = L) which leads to

p_ (a, p, p, x) is therefore always lower than p^_ (a, b, p, x). The current J
is not x-dependent. This means that the density profile of the ordered-
sequential model for a given set of parameters a, b, p is, up to a constant
(the current), the same for both directions of the order of update. The
stationary states produced by T_ and T_ for a given set of parameters are
always in the same phase. It is obvious that the "crucial step" (A.3) is the
simplest way to obtain such a behaviour.

14 In the following we will denote the local density <Tx> at site x by p(a., fi, p, x) in order to
stress the dependence on the other parameters.



188 Rajewsky et al.

When using the particle-hole symmetry

we immediately see that the density profile on the line a = /( has to be
symmetric with respect to point L/2. For this case, we further obtain
p ^ ( o L , p , ( L + 1 / 2 ) = ( 1 + J ( ( n , p ) ) / 2 . Finally, by using (B.2) and (B.3), and
the results for the current and pbulk in the high-density region, the bulk
density in the low-density region pbulk = a/p is obtained.

C. SYMMETRIC DIFFUSION

We briefly discuss the case of symmetric diffusion (p = q) for the
ordered-sequential update. The density p ( a , b , p, x) at site x (1< x ^ L) is
given by

(A.4) and (A.5) yield

This means that the density can be calculated immediately by commuting
D with the help of (C.2) through the chain in (C. I ) . By using the boundary
conditions, the density can easily be calculated, which in turn makes it
possible to estimate the current.(29) It is intuitively clear that the current
vanishes in the thermodynamical limit L -> oo for arbitrary values of
*,P,p.

D. ASEP WITH ORDERED-SEQUENTIAL UPDATE ON A RING

Since we expect that the periodic system can be described by an one-
dimensional representation of the algebra (A.1), we are looking for solu-
tions of (A.1) with real numbers e, d, e, d:

The normalized density p is given by
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There is some freedom how to choose e, d, e, d. We set e + d = e + d = 1.
Therefore, (D.1) yields

The current J is given by J = pde — qcd and one obtains

Obviously, J(p, q) = 0 for the case of symmetric diffusion, p = q.
Finally, we like to point out that the fact that the periodic system is

described by a one-dimensional representation implies that in this case
mean-field theory is exact.

E. T// IN A THREE-STATE NOTATION

The operators A, y can be written as:

The basis chosen for ,tf and y is (0, 1, — 1).
The local transfer-matrix ,Ti for any pair of sites ( i , i + 1 ) is nine-

dimensional. Since the third state ( — 1) may not appear after the update of
the whole chain, the last four rows and every third column are irrelevant
and here set to zero:

The basis is (00,01,0-1, 10, 11, 1 - 1, - 10, - 11, - 1 - 1).
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F. MATRIX ALGEBRA FOR PARALLEL DYNAMICS

The MPA for parallel update proposed in Section 3.2 leads to the
following algebra:

and the boundary conditions

Note that the last bulk equation 0 = Df excludes a scalar solution for the
algebra. This is consistent with our earlier observation that there is no
simple mean-field solution of the model.

G. CHECK OF CURRENT-DENSITY RELATIONS

Defining C = E + D and Cv = £ + F + 'it is easy to see that

holds. This is implied by probability conservation (the columns of fi add
up to one) and the exchange mechanism (57). The boundary equations
lead to

and
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The bulk equations (F.2), (F.5) give

We can now check the relations which connect the densities at the ends of
the chain and the current J which has to be constant throughout the chain:

Note that the first (second) equation would not hold for the sequential
update from the left (right) to the right (left) and that in fact we have only
to prove one of these equations because we can make use of the particle-
hole symmetry of the model. We therefore write, using the algebra (equa-
tions (F.11), (F.3)):

Making use of (G.4), commuting C to the left end of the chain (G.1), transform-
ing it to C there (G.2), and using J(a, B, p) = 1/(ZL) p <W \ C L - 2 D E \ V y
we get

which is the desired result.
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